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Protein Kinase C8 (PKC8): Activation Mechanisms and Functions
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Protein kinase C (PKC)8 was the first new/novel PKC isoform to be identified by the
screening of mammalian cDNA libraries, based on the structural homology of its nucle-
otide sequences with those of classical/conventional PKC isoforms. PKC8 is expressed
ubiquitously among cells and tissues. It is activated by diacylglycerol produced by
receptor-mediated hydrolysis of membrane inositol phospholipids as well as by tumor-
promoting phorbol ester through the binding of these compounds to the Cl region in its
regulatory domain. It is also cleaved by caspase to generate a catalytically active frag-
ment, and it is converted to an active form without proteolysis through the tyrosine
phosphorylation reaction. Various lines of evidence indicate that PKC8 activated in dis-
tinct ways plays critical roles in cellular functions such as the control of growth, differ-
entiation, and apoptosis. This article briefly summarizes the regulatory mechanisms of
PKC8 activity and its functions in cell signaling.
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Molecular cloning and genomic structure
Protein kinase C (PKC)8 was cloned from a rat brain

cDNA library by using fragments encoding classical/con-
ventional PKC (cPKC) isoforms as probes (1). It was subse-
quently obtained from different mammalian species such
as mouse (2, 3) and human (4) and classified as a member
of the new/novel PKC (nPKC) subgroup (for reviews: Refs.
5-8). The open reading frames of rat, mouse, and human
clones encode proteins of 673, 674, and 676 amino acid resi-
dues, respectively, that are highly homologous and have an
almost identical calculated molecular mass of 77.5 kDa.
The phylogenic tree of the PKC isoforms (http^Avww.
(»llsignal.com/retai]/reference/kinase/pkc.asp) shows that
the primary structure of PKC8 is most closely related to
another nPKC isoform PKC0. PKC9 is expressed predomi-
nantly in muscle and hematopoietic cells as reviewed in
this series (9), whereas PKC8 is widely distributed among
cells and tissues, suggesting that PKC8 has universal
rather than cell-type-epecific roles in mammals.

The genomic structure of PKC8 is analyzed for human
(http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=
5580), mouse (http://www.ncbi.nlm.nih.gov/LocusLink/
LocRpt.cgi?l=18753), and rat (http://rgd.mcw.edu/tools/
genes/genes_view.cgi?id=67383). The PKC8 gene is local-
ized on chromosomes 3 (10), 14 (10), and 19 (11) of human,
mouse, and rat, respectively, although the rat gene is as-
signed to chromosome 16 in the data base above. The 5'-
regulatory region of the rat PKC8 gene lacks a TATA box
but contains putative binding sites for transcription factors
such as AP-1, NFKB, Sp-1, and NGFI-C (nerve growth fac-
tor induced-C) (11). Functional studies of the promoter re-
gions will clarify the regulatory mechanisms for the expres-
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sion of PKCS. In addition, two cDNA clones encoding possi-
ble splicing variants of PKC8 have been found: one has an
insertion in the middle of the molecule (12), and the other
is a truncated enzyme lacking its carboxyl-terminal half
(13), although their physiological roles are yet to be ana-
lyzed.

Protein structure
PKC8 has catalytic and regulatory domains in the car-

boxyl- and amino-terminal halves, respectively (Fig. 1). The
catalytic domain contains two conserved regions, C3 and
C4, in common with other members of the PKC family, that
roughly correspond to the protein kinase subdomains I to
XJ (14). In this review, the amino acid residue numbers of
rat PKC8 are employed. The C4 region has a phosphoryla-
tion motif site, Thr-505, in the activation loop, and the car-
boxyl-tenninal end of the enzyme has two conserved phos-
phorylation sites, Ser-643 and Ser-662, which are turn and
hydrophobic motif sites, respectively (15). The role of phos-
phorylation in the regulation of catalytic activity will be
discussed later. The regulatory domain of the cPKC iso-
forms has two conserved regions, Cl and C2, whereas
PKC8 contains only a Cl region but lacks an authentic C2
region, having instead a C2-like region in the amino-termi-
nal end of the molecule. There is a pseudosubstrate se-
quence between the C2-like and Cl regions, centered on
Ala-147, that is proposed to occupy the substrate recogni-
tion site in the catalytic domain of PKC8 to keep this iso-
form in an inactive conformation.

The three-dimensional structure of intact PKC8 has not
been determined, but the precise structures of the two re-
gions in the regulatory domain have been revealed by X-ray
crystallographic analysis (16, 17). The Cl region of the
cPKC and nPKC subgroups binds diacylglycerol and phor-
bol ester, playing an essential role in its activation, and
includes a tandem repeat of Cys-rich motifs named CIA
and C1B (18). Each Cys-rich motif of cPKC isoforms can
bind phorbol. ester, whereas the CIA and GIB regions of
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the nPKC subgroup are not equivalent, and the CIB region
is the major phorbol ester-binding site of nPKC isoforms
{19-21). The crystal structure of the CIB region of PKCS
(amino acid resides 231-280) has been determined in com-
plex with phorbol ester, which binds to a pocket between
two pulled-apart p sheets at the tip of the region (16). The
C2 region is found in various proteins involved in mem-
brane trafficking and signal transduction (22), and the do-
main in cPKC isoforms binds membrane phospholipids in a
Ca2+-dependent manner. PKCS does not require Ca2+ for its
activity, and crystallographic analysis indicated consistent-
ly that the C2-like region of the PKC isoform (amino acid
resides 1-123) is a variant of the C2 fold that lacks se-
quences necessary for Ca2+ coordination (17). Recently, two-
dimensional crystal structures of intact PKC8 and its regu-
latory domain were analyzed (23). Intact PKC8 and the
regulatory domain on the lipid monolayer show a donut-
shaped structure, to which the crystal structure of the CIB
region is accommodated by overlaying the images. Precise
structural information on intact PKCS is essential to eluci-
date the regulatory mechanism of the enzyme.

Enzymatic properties
The expression product of the rat PKC8 clone recovered

from transfected COS-7 cells showed a protein kinase activ-
ity dependent on diacylglycerol in the presence of phospho-
lipid (1). Later, the enzymes isolated from transfected
mammalian cells (2, 24, 25) and insect cells infected by bac-
ulovirus vector (4, 26) were revealed to act independently of
Ca2+ when activated by diacylglycerol or phorbol ester.
PKC8 was subsequently confirmed to be activated in intact
cells by phorbol ester treatment as well as by physiological
stimuli inducing inositol phospholipid hydrolysis, such as
bombesin, serum, platelet-derived growth factor, and epi-
dermal growth factor, as judged by its membrane transloca-
tion, down-regulation, and phosphorylation (27, 28). As a
native enzyme sample, a phorbol ester-activated, Ca2+-un-
responsive protein kinase was purified from the Triton X-
100 extract of porcine spleen and identified as PKC8 by
immunoblot analysis using a specific antibody (29). PKCS
was also purified from the detergent-soluble fraction of
ABPL-3 mouse myeloid cells (3) and rat brain (25). Its bio-
chemical properties have been analyzed using these native
and recombinant enzyme preparations. For example, some
PKC isoforms are activated efficiently by fatty acids in vitro
and are proposed to be regulated in the phospholipase Aj
pathway, but the PKCS activity is not significantly en-

Regulatory domain Catalytic domain

H2N <C2-like COOH

Pseudosubstrate
643 662

hanced by fatty acids (25, 30).

Activation mechanisms
PKCS is regulated not only by the binding of diacylglyc-

erol or phorbol ester but also by molecular mechnisms such
as phosphorylation and proteolytic reactions (Fig. 2).

Phosphorylation at motif sites. A number of protein
kinases are regulated by phosphorylation (31), and the
PKC family members have phosphorylation motif sites of
conserved serine or threonine residues (8, 15). One is a
threonine residue in the activation loop that is common
among members of the PKC family. In addition, cPKC and
nPKC isoforms are phosphorylated at turn and hydropho-
bic motif sites in the carboxyl-terminal end region, whereas
atypical PKC isoforms have the turn motif site but not the
hydrophobic motif site, which is replaced by a phosphate
mimic, Glu. Studies of cPKC isoforms have shown that the
sequential phosphorylation of these threonine and serine
residues render them catalytically competent. cPKC iso-
forms are first phosphorylated in the activation loop by an
upstream kinase, PDK-1 or a related enzyme, which is es-
sential for its catalytic activity. Then, turn and hydrophobic
motif sites are autophosphorylated, and cPKC isoforms
adopt a mature and stable conformation ready to be acti-
vated by diacylglycerol or phorbol ester.

PKCS has activation loop, turn, and hydrophobic motif
sites at Thr-505, Ser-643, and Ser-662, respectively, and
these sites are substantially phosphorylated in vivo (32).
PKCS differs from cPKC isoforms, however, in the regula-
tory mechanism by phosphorylation. Namely, PKC8 ex-
pressed in bacteria, which is unphosphorylated at Thr-505,
shows a modest catalytic activity. Furthermore, a point-
mutant molecule with Ala replacing Thr-505 is active,
although the mutation of the corresponding threonine resi-
due in cPKC isoforms makes them kinase-dead (33). The
acidic residue Glu-500 in the activation loop sequence,
which is unique in PKCS, is proposed to partially fulfill the
role of phosphorylation for catalytic competence of the en-
zyme (34). In embryonic stem cells lacking PDK-1, the in-

Growth and differentiation signal Apoptotic signal

TPA H2O2

DG 1

Phosphorylation motif sites

Fig. 1. The structure of PKC8. The domain structure of PKC8 is
schematically shown, with the phosphorylation sites of serine (S),
threonine (T), and tyrosine (Y) residues.

Tyrosjne phosphorylation Fragmentation

Fig. 2. Activation of PKCS by distinct mechanisms. Regulatory
mechanisms for PKCS are schematically shown. DG, diacylglycerol;
PLC, phospholipase C; TPA, 12-0-tetradecanoylphorbol-13-acetate;
Tyr-kinase, tyrosine kinase.
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tracellular level of endogenously expressed PKCS is greatly
reduced, suggesting that phosphorylation at Thr-505 by
PDK-1 is required for the stability of the enzyme in mam-
malian cells (35). Ser-643 is autophosphorylated (34, 36),
but Ser-662 is recognized by an upstream kinase (37, 38).
PKC£, an atypical PKC isoform, has been identified as a
component of the upstream kinase responsible for phospho-
rylation of Ser-662, although it is not clear whether PKC£
directly recognizes this site. In addition, rapamycin, an
immunosuppressant, blocks the ire vivo phosphorylation
reaction of Ser-662, and thus phosphorylation of this hydro-
phobic site is regulated by a pathway involving the mam-
malian target of rapamycin (mTOR) (39). In fact, mTOR
has been shown to interact with PKC8 (40). Phosphoryla-
tion at Ser-662 as well as at Thr-505 is regulated in intact
cells (32, 41), and thus it is necessary to evaluate the role of
phosphorylation at these motif sites in comparison with
other PKC isoforms.

Tyrosine phosphorylation. PKC isoforms such as a,
(31, 7, 8, e, £, 6, and iA are further phosphorylated on ty-
rosine upon stimulation of the cells (32, 42-48). In contrast
to phosphorylation at serine and threonine motif sites, the
phosphorylated tyrosine residues thus far identified such
as Tyr-52 (48), Tyr-155 (48), Tyr-187 (49), Tyr-311 (32, 50),
Tyr-332 (32), and Tyr-565 (48) of PKC8, Tyr-90 of PKC9
(46), and Tyr-256, Tyr-271, and Tyr-325 of PKCi (47), are
not conserved among members of the PKC family, although
Tyr-512 of PKC8 is an exception (32, 45). Tyrosine phospho-
rylation appears to be an isoform-specific modification rath-
er than one common to the whole family. In PKC5, which is
most efficiently tyrosine-phosphorylated among the PKC
family, different tyrosine residues appear to be phosphory-
lated depending on cell stimuli. In fact, PKC8 is phosphory-
lated by various tyrosine kinases, and in some cases, it is
associated with tyrosine kinases, such as Src (50-55), Fyn
(43, 51, 52), Lyn (48, 55), Abl (56, 57), PYK2 (58), Lck (32),
and growth factor receptors (43, 52). Therefore, it is inter-
esting to know the effects of tyrosine phosphorylation on
the catalytic activity of PKC. The catalytic activity of PKC8
was shown to be reduced by tyrosine phosphorylation in li-
nos-transformed keratinocytes (42) and in epidermal cells
treated with epidermal growth factor (52) or phosphory-
lated by Src family kinases (59). On the other hand, ty-
rosine phosphoryation enhances the enzymatic activity in
various cells stimulated with substances such as phorbol
ester, growth factors, and hormones (43, 48, 60-66). In
some cases, the enzymatic specificity is altered by this mod-
ification (67-69). We have found that PKC8 is tyrosine-
phosphorylated at Tyr-311, Tyr-332, and Tyr-512 in the
HjOj-treated cells, and that the enzyme recovered is consti-
tutively active and is independent of diacylglycerol (32, 45).
Consistent with this, PKC8 does not translocate to mem-
branes but apparently stays in the cytosol after HJOJ stim-
ulation, whereas it associates with membranes in cells
stimulated by a receptor agonist (70). Therefore, PKC8 is
activated by tyrosine phosphorylation in the HjCytreated
cells through a mechanism unrelated to receptor-coupled
hydrolysis of inositol phospholipids. Also, PKC5 phosphory-
lated at Tyr-311 in vitro, the major tyrosine phosphoryla-
tion site in the HjCytreated cells, shows an enhanced cat-
alytic activity (32). The PKC isoform phosphorylated at
Tyr-311 is, however, further activated by diacylglycerol,
indicating that modification of this single residue is insuffi-

cient to generate the fully active enzyme. The active form of
PKC8 may-be generated in vivo by phosphorylation at more
than one residue. It is noteworthy that the targets of the
tyrosine-phosphorylated PKC8 have been analyzed (71-73).
In addition, a receptor-type tyrosine phosphatase, CD45, is
shown to be involved in dephosphorylation of PKC8 (74),
although the treatment of the cells with protein—tyrosine
phosphatase inhibitors does not induce tyrosine phosphory-
lation or generation of the active PKC8 (75). It seems,
therefore, that the H ^ treatment facilitates the tyrosine
phosphorylation reaction of PKC8 rather than preventing
dephosphorylation of the enzyme. On the other hand, PKC
is suggested to be regulated by redox modification (76). It is
interesting to assume that the catalytic activity of PKC8 is
regulated by the combination of phosphorylation on ty-
rosine, serine, and threonine residues, as well as by the oxi-
dative modification.

Active fragment. A catalytically active fragment of
PKC8 is generated by proteolysis in cells induced to
undergo apoptosis in response to ionizing radiation, DNA-
damaging drugs, and anti-Fas antibody (77-80). The cata-
lytic fragment of PKC8, presumably cleaved by caspase 3 or
a related enzyme between Asp-327 and Asn-328, inhibits
the function of DNA-dependent protein kinase and contrib-
utes to DNA damage—induced apoptosis (81).

In the CHO cell line overproducing PKCS, HjOj-induced
apoptosis is enhanced compared with that in wild-type cells
(82). Under such conditions, PKCS is recovered as the
active form by tyrosine phosphorylation as described above,
but the catalytic fragment is not detected in the cell line.
Similarly, apoptosis is potentiated by overexpressing PKC8
in LNCaP prostate cancer cells without proteolytic activa-
tion of PKC8 (83). This cleavage site of PKC8 by caspase 3
is located between two phosphorylation sites of Tyr-311 and
Tyr-332. Phosphorylation at Tyr-311 is shown to promote
degradation of PKC8 (50), presumably after ubiquitination
(84). PKCS phosphorylated at Tyr-311 and probably at Tyr-
332 may be insensitive to proteolysis by caspase. The cata-
lytic fragment and the tyrosine-phosphorylated active form
of PKCS seem to contribute to promotion of cell death inde-
pendently. The splicing variant of PKCS having an inser-
tion in the middle of the molecule (12) appears to be insus-
ceptible to the protease because it lacks the caspase 3-rec-
ognition site. It is interesting to speculate that the splicing
variant may be activated not by the cleavage but through
the tyrosine phosphorylation.

On the other hand, ultraviolet radiation activates PKCS
by different mechanisms. Low doses of ultraviolet radia-
tion, which generate reactive oxygen species, activate PKCS
by tyrosine phosphorylation without proteolysis in a kerati-
nocyte cell line HaCaT (85), whereas PKCS is cleaved after
high doses of ultraviolet radiation in normal human kerati-
nocytes (86). PKC8 seems to be regulated by reversible and
irreversible mechanisms depending on cell stimuli.

Analysis of the roles
PKCS shares properties with other PKC isoforms and is

activated by diacylglycerol and phorbol ester. The functions
of PKCS ire vivo have been analyzed by many techniques.

Activators and inhibitors. Phorbol esters and related
tumor promoters are widely employed as PKC activators.
The ire vivo effects of these compounds should be evaluated
carefully, because, for example, phorbol esters not only acti-
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vate the PKC family but bind to other proteins such as chi-
maerin (87, 88) and Ras exchange factor RasGRP3 (89).
Furthermore, these compounds exhibit different activities
toward the activation, intracellular translocation, and
down-regulation of PKC isoforms (6, 90). In particular, bry-
ostatin, a macrocyclic lactone that activates PKC, protects
PKC8 selectively from phorbol ester-induced down-regula-
tion of the PKC isoforms (91, 92). Thus, bryostatin has been
employed in combination with phorbol esters to elucidate
specific roles of PKC8 such as tumor suppresser function
(93), inhibition of the expression of glutamine synthetase
(94), and contact inhibition of growth (95). Recently, some
bryostatin analogues were synthesized that bind selectively
to the Cl region peptides of PKC8 (96), and thus it will
become possible to design compounds that specifically regu-
late PKCS.

On the other hand, antisense oligonucleotides have been
introduced into cultured cells to suppress the expression of
the PKC isoform. This technique has revealed that PKC8 is
implicated in several physiological functions including dif-
ferentiation of murine erythroleukemia cells (97), the regu-
lation of cation-chloride cotransporter (98, 99), activation of
mitogen-activated protein kinases (100), expression of
nitric oxide synthase (101), and stimulation of pyruvate de-
hydrogenase (102).

Among the PKC inhibitors, rottlerin was found to show a
narrow spectrum and has been employed to distinguish the
roles of PKC8 from those of other PKC isoforms, although it
also attenuates calmodulin-dependent protein kinase HI at
low concentrations (203). In vitro analysis showed later
that rottlerin does not suppress PKC8, whereas it inhibits
some other enzymes such as p38-regulated/activated ki-
nase and mitogen-activated protein kinase-activated pro-
tein kinase 2 (104). The effects of rottlerin may depend on
the assay conditions or the preparation of the compound
(the home page of LC Laboratories, http^Avww.lclabs.com/
PRODFILE/P-R/R-9630.php3). More recently, rottlerin was
revealed to be a mitochondria uncoupler and suggested to
block the PKC8 activity indirectly in vivo (105). It also
inhibited the pervanadate-induced tyrosine phosphoryla-
tion in PKCS-null mast cells (106). Results obtained by
using rottlerin need to be evaluated cautiously.

As a novel approach to investigate the role of PKCS
based on structural modeling of the C2-like region, PKC8-
selective activator and inhibitor peptides were synthesized
that correspond to a potential sequence resembling its iso-
form-specific anchoring protein and a possible binding site
for the anchoring protein, respectively (107). The activator
and inhibitor peptides regulate the intracellular transloca-
tion of PKCS, and increased and suppressed ischemic dam-
age of heart cells, respectively, when introduced by cross-
linking to Drosophila antennapedia homeodomain-derived
carrier peptide. It will be interesting to see if this method
can be applied to other cells.

Overexpression. By using isolated cDNA, cell lines sta-
bly overproducing the wild type PKCS have been estab-
lished to elucidate the role of the PKC isoform. Phorbol
ester-induced growth inhibition is generally observed in
such transformants constructed by using CHO cells (108),
NIH 3T3 cells (109), 32D myeloid progenitor cells (110),
A7r5 vascular smooth muscle cells (111), and RFPEC en-
dothelial cells (112). In particular, growth arrest at Gj/M
(108) and Go/G, (111) phases and cell differentiation (109,

110) are observed. Differentiation is also observed in nor-
mal keratinocytes carrying PKCS introduced with an aden-
ovirus vector (113). Furthermore, HjOj-inducded apoptosis
is enhanced in the CHO cell line overproducing this PKC
isoform as described above (82). On the other hand, PKC8
is increased in highly metastatic mammary tumor cell
lines, and the expression of its regulatory domain inhibits
anchorage-independent growth in the tumor cell lines, sug-
gesting that PKCS contributes to cell growth and that the
regulatory domain works as a dominant negative fragment
(114). Kinase-negative mutants in which Lys-376 in the
ATP-binding site was replaced by Ala (115) and by Arg
(116, 117) have also been used as dominant negatives. In
contrast, a mutant molecule in which both Arg-144 and
Arg-145 in the pseudosubstrate sequence were replaced by
Ala is a constitutively active molecule (115). Chimeric mol-
ecules have also been constructed by swapping the regula-
tory and catalytic domains between PKC isoforms to deter-
mine the role of each domain in isoform-specific function,
and the catalytic domain of PKC8 was shown to be respon-
sible for phorbol ester-induced cell differentiation (118-
120).

Transgenic mice have been developed that overexpress
PKC8 in basal epidermal cells under the control of the ker-
atin 14 promoter, and that are resistant to skin tumor for-
mation by phorbol ester (121). Furthermore, phorbol ester
induced a several-fold increase of ornithine decarboxylase,
the rate-limiting step enzyme for polyamine synthesis, and
the administration of an irreversible inhibitor of ornithine
decarboxylase, a-difluoromethylornithine, did not affect the
skin tumor multiplicity in the transgenic mice (122). There-
fore, PKCS is involved both in tumor suppression and
polyamine synthesis in epidermal cells, but these two sig-
naling pathways appear to be independent.

Knockout mice. Recently, mice deficient in PKCS were
generated independently by two groups (106, 123-126). The
knockout mice developed normally and were fertile (123)
and viable up to twelve months (126). PKCS is proposed to
act as tumor suppresser (93, 121, 127, 128), although no
obvious increase of cancer-induced death was observed in
PKCS-deficient mice (126). The PKCS-null mice, however,
showed increased proliferation of B lymphocytes and were
prone to autoimmune disease (126). Also, the deficiency of
PKCS prevented B cell tolerance and allowed maturation
and terminal differentiation of self-reactive B cells (124).
These results suggest that PKC8 is involved in negative
regulation of proliferation, especially the induction of toler-
ance in B cells. In PKC8-deficient bone marrow-derived
mast cells, a sustained Ca2+ mobilization and a high level of
degranulation were observed, indicating that PKCS reduces
antigen-induced degranulation (125). In addition, severe
arteriosclerotic lesions were found in the vein grafts of
PKCS-deficient animals, in which veins were isografted to
carotid arteries (123). The increase of vascular smooth
muscle cells, namely, decreased cell death, observed in the
arteriosclerotic lesions suggested that PKCS maintains
homeostasis of smooth muscle cells, in particular by induc-
ing apoptosis. It is rather unexpected that PKC8-deficient
mice show a clear phenotype only in certain cells, even
though PKC8 is expressed ubiquitously.

PKCS has a proapoptotic role in various cells (73, 129-
132), and it is worth noting that PKCS translocates to mito-
chondria to alter its function (102, 133, 134). PKC8 may
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have a role in the regulation of apoptosis that is common to
all cell types. In contrast, PKC8 is involved in growth regu-
lation such as neuritogenesis (135, 136), shedding of the
ectodomain of the heparin-binding epidermal growth fac-
tor-like growth factor (137), and the interleuMn-induced
transcription (138). In particular, PKCS regulates the mito-
gen-activated protein kinase cascade (136, 139-142) and
interacts with a novel protein kinase, DIK (143). Further-
more, the role of PKCS in cell cycle regulation has been
demonstrated (144-147). More detailed studies of the
PKCS-deficient mice will give important clues to elucidate
the roles of PKCS.

Conclusion
PKCS is regulated by distinct molecular mechanisms: ac-

tivation by diacylglycerol after serine and threonine phos-
phorylation at the motif sites, the formation of the active
enzyme by tyrosine phosphorylation, and the generation of
the catalytic fragment. This enzyme is, in other words, acti-
vated by the receptor-coupled mechanisms as well as in
manners independent of membrane receptors. On the other
hand, PKCS contributes to both general and cell type-spe-
cific functions. It is interesting to assume that PKCS acti-
vated by distinct mechanisms plays different roles, and
thus further studies are required to investigate the func-
tions of PKCS in each signaling pathway.
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